45 research outputs found

    Submerged microfiltration coupled with physcio-chemical processes as pretreatment to sea water desalination

    Full text link
    In this study, the critical flux of the submerged membrane system was experimentally evaluated when it was used for seawater with and without pre-treatment. In this study, different processes such as flocculation with ferric chloride (FeCl3) and different doses of PAC adsorption were used as a pre-treatment. The pretreatment of flocculant of 2 mg/L of FeCl3 and adsorption with the dose of 1 g/L PAC showed an improvement in the critical flux from 5 L/m2.h to 6.7 L/m2.h and 13.3 L/m2.h respectively. The performance of these pretreatments was also determined in terms of modified fouling index using ultrafilter membrane (UF-MFI). UF-MFI and SDI indicated that PAC adsorption was a better pretreatment than flocculation for the seawater used in this study. Molecular weight distribution (MWD) of seawater organic matter was also examined after different pretreatments. MWD of the raw seawater was mainly in the range from 1510 to 130 Da. It is observed that FeCl3 flocculation and PAC adsorption as pretreatments partially removed the organic matter of 1510 Da and 130Da respectively. © 2009 Desalination Publications

    The combined effect of chemoprophylaxis with single dose rifampicin and immunoprophylaxis with BCG to prevent leprosy in contacts of newly diagnosed leprosy cases: A cluster randomized controlled trial (MALTALEP study)

    Get PDF
    Background: Despite almost 30 years of effective chemotherapy with MDT, the global new case detection rate of leprosy has remained quite constant over the past years. New tools and methodologies are necessary to interrupt the transmission of M. leprae. Single-dose rifampicin (SDR) has been shown to prevent 57% of incident cases of leprosy in the first two years, when given to contacts of newly diagnosed cases. Immunization of contacts with BCG has been less well documented, but appears to have a preventive effect lasting up to 9 years. However, one major disadvantage is the occurrence of excess cases within the first year after immunization. The objective of this study is to examine the effect of chemoprophylaxis with SDR and immunoprophylaxis with BCG on the clinical outcome as well as on host immune responses and gene expression profiles in contacts of newly diagnosed leprosy patients. We hypothesize that the effects of both interventions may be complementary, causing the combined preventive outcome to be significant and long-lasting.Methods/design: Through a cluster randomized controlled trial we compare immunization with BCG alone with BCG plus SDR in contacts of new leprosy cases. Contact groups of around 15 persons will be established for each of the 1300 leprosy patients included in the trial, resulting in approximately 20,000 contacts in total. BCG will be administered to the intervention group followed by SDR, 2 months later. The control group will receive BCG only. In total 10,000 contacts will be included in both intervention arms over a 2-year period. Follow-up will take place one year as well as two years after intake. The primary outcome is the occurrence of clinical leprosy within two years. Simultaneously with vaccination and SDR, blood samples for in vitro analyses will be obtained from 300 contacts participating in the trial to determine the effect of these chemo- and immunoprophylactic interventions on immune and genetic host parameters.Discussion: Combined chemoprophylaxis and immunoprophylaxis is potentially a very powerful and innovative tool aimed at contacts of leprosy patients that could reduce the transmission of M. leprae markedly. The trial intends to substantiate this potential preventive effect. Evaluation of immune and genetic biomarker profiles will allow identification of pathogenic versus (BCG-induced) protective host biomarkers and could lead to effective prophylactic interventions for leprosy using optimized tools for identification of individuals who are most at risk of developing disease.Trial registration: Netherlands Trial Register: NTR3087

    Diet-Related Risk Factors for Leprosy: A Case-Control Study

    Get PDF
    Food shortage was associated with leprosy in two recent studies investigating the relation between socioeconomic factors and leprosy. Inadequate intake of nutrients due to food shortage may affect the immune system and influence the progression of infection to clinical leprosy. We aimed to identify possible differences in dietary intake between recently diagnosed leprosy patients and control subjects. In a leprosy endemic area of Bangladesh, newly diagnosed leprosy patients and control subjects were interviewed about their socioeconomic situation, health and diet. Dietary intakes were recorded with a 24-hour recall, from which a Dietary Diversity Score (DDS) was calculated. Body Mass Index (BMI) was calculated and Household Food Insecurity Access Scale (HFIAS) was filled out for every participant. Using logistic regression, a univariate, block wise multivariate, and an integrated analysis were carried out. 52 leprosy cases and 100 control subjects were included. Food shortage was more common, dietary diversity was lower and household food insecurity was higher in the patient group. Patients consumed significantly less items from the DDS food groups ‘Meat and fish’ and ‘Other fruits and vegetables.’ Lower food expenditure per capita, lower BMI, lower DDS and absence of household food stocks are the main factors associated with an increased risk of having leprosy. Low income families have only little money to spend on food and consequently have a low intake of highly nutritious non-rice foods such as meat, fish, milk, eggs, fruits and vegetables. Development of clinical leprosy could be explained by deficiencies of the nutrients that these foods normally provide

    Single cell phenotyping reveals heterogeneity among haematopoietic stem cells following infection.

    No full text
    The haematopoietic stem cell (HSC) niche provides essential micro-environmental cues for the production and maintenance of HSCs within the bone marrow. During inflammation, haematopoietic dynamics are perturbed, but it is not known whether changes to the HSC-niche interaction occur as a result. We visualise HSCs directly in vivo, enabling detailed analysis of the 3D niche dynamics and migration patterns in murine bone marrow following Trichinella spiralis infection. Spatial statistical analysis of these HSC trajectories reveals two distinct modes of HSC behaviour: (i) a pattern of revisiting previously explored space, and (ii) a pattern of exploring new space. Whereas HSCs from control donors predominantly follow pattern (i), those from infected mice adopt both strategies. Using detailed computational analyses of cell migration tracks and life-history theory, we show that the increased motility of HSCs following infection can, perhaps counterintuitively, enable mice to cope better in deteriorating HSC-niche micro-environments following infection

    Different niches for stem cells carrying the same oncogenic driver affect pathogenesis and therapy response in myeloproliferative neoplasms

    Get PDF
    Aging facilitates the expansion of hematopoietic stem cells (HSCs) carrying clonal hematopoiesis-related somatic mutations and the development of myeloid malignancies, such as myeloproliferative neoplasms (MPNs). While cooperating mutations can cause transformation, it is unclear whether distinct bone marrow (BM) HSC-niches can influence the growth and therapy response of HSCs carrying the same oncogenic driver. Here we found different BM niches for HSCs in MPN subtypes. JAK-STAT signaling differentially regulates CDC42-dependent HSC polarity, niche interaction and mutant cell expansion. Asymmetric HSC distribution causes differential BM niche remodeling: sinusoidal dilation in polycythemia vera and endosteal niche expansion in essential thrombocythemia. MPN development accelerates in a prematurely aged BM microenvironment, suggesting that the specialized niche can modulate mutant cell expansion. Finally, dissimilar HSC-niche interactions underpin variable clinical response to JAK inhibitor. Therefore, HSC-niche interactions influence the expansion rate and therapy response of cells carrying the same clonal hematopoiesis oncogenic driver

    Effectiveness of single-dose rifampicin after BCG vaccination to prevent leprosy in close contacts of patients with newly diagnosed leprosy: A cluster randomized controlled trial

    Get PDF
    Objective: To assess the effectiveness of single-dose rifampicin (SDR) after bacillus Calmette–Guérin (BCG) vaccination in preventing leprosy in contacts. Methods: This was a single-centre, cluster-randomized controlled trial at a leprosy control programme in northwest Bangladesh. Participants were the 14 988 contacts of 1552 new leprosy patients who were randomized into the SDR − arm (n = 7379) and the SDR + arm (n = 7609). In the intervention group, BCG vaccination was followed by SDR 8–12 weeks later. In the control group, BCG vaccination only was given. Follow-up was performed at 1 year and 2 years after intake. The main outcome measure was the occurrence of leprosy. Results: The incidence rate per 10 000 person-years at risk was 44 in the SDR − arm and 31 in the SDR + arm at 1 year; the incidence rate was 34 in the SDR − arm and 41 in the SDR + arm at 2 years. There was a statistically non-significant (p = 0.148; 42%) reduction for paucibacillary (PB) leprosy in the SDR+ arm at 1 year. Of all new cases, 33.6% appeared within 8–12 weeks after BCG vaccination. Conclusions: In the first year, SDR after BCG vaccination reduced the incidence of PB leprosy among contacts by 42%. This was a statistically non-significant reduction due to the limited number of cases after SDR was administered. To what extent SDR suppresses excess leprosy cases after BCG vaccination is difficult to establish because many cases appeared before the SDR intervention. Trial registration: Netherlands Trial Register: NTR3087

    Application of new host biomarker profiles in quantitative point-of-care tests facilitates leprosy diagnosis in the field

    Get PDF
    Background: Transmission of Mycobacterium leprae, the pathogen causing leprosy, is still persistent. To facilitate timely (prophylactic) treatment and reduce transmission it is vital to both early diagnose leprosy, and identify infected individuals lacking clinical symptoms. However, leprosy-specific biomarkers are limited, particularly for paucibacillary disease. Therefore, our objective was to identify new biomarkers for leprosy and assess their applicability in point-of-care (POC) tests. Methods: Using multiplex-bead-arrays, 60 host-proteins were measured in a cross-sectional approach in 24-h whole blood assays (WBAs) collected in Bangladesh (79 patients; 54 contacts; 51 endemic controls (EC)). Next, 17 promising biomarkers were validated in WBAs of a separate cohort (55 patients; 27 EC). Finally, in a third cohort (36 patients; 20 EC), five candidate markers detectable in plasma were assessed for application in POC tests. Findings: This study identified three new biomarkers for leprosy (ApoA1, IL-1Ra, S100A12), and confirmed five previously described biomarkers (CCL4, CRP, IL-10, IP-10, αPGL-I IgM). Overnight stimulation in WBAs provided increased specificity for leprosy and was required for IL-10, IL-1Ra and CCL4. The remaining five biomarkers were directly detectable in plasma, hence suitable for rapid POC tests. Indeed, lateral flow assays (LFAs) utilizing this five-marker profile detected both multi- and paucibacillary leprosy patients with variable immune responses. Interpretation: Application of novel host-biomarker profiles to rapid, quantitative LFAs improves leprosy diagnosis and allows POC testing in low-resource settings. This platform can thus aid diagnosis and classification of leprosy and also provides a tool to detect M.leprae infection in large-scale contact screening in the field

    Redirection to the bone marrow improves T cell persistence and antitumor functions

    Get PDF
    A key predictor for the success of gene-modified T cell therapies for cancer is the persistence of transferred cells in the patient. The propensity of less differentiated memory T cells to expand and survive efficiently has therefore made them attractive candidates for clinical application. We hypothesized that redirecting T cells to specialized niches in the BM that support memory differentiation would confer increased therapeutic efficacy. We show that overexpression of chemokine receptor CXCR4 in CD8+ T cells (TCXCR4) enhanced their migration toward vascular-associated CXCL12+ cells in the BM and increased their local engraftment. Increased access of TCXCR4 to the BM microenvironment induced IL-15–dependent homeostatic expansion and promoted the differentiation of memory precursor–like cells with low expression of programmed death-1, resistance to apoptosis, and a heightened capacity to generate polyfunctional cytokine-producing effector cells. Following transfer to lymphoma-bearing mice, TCXCR4 showed a greater capacity for effector expansion and better tumor protection, the latter being independent of changes in trafficking to the tumor bed or local out-competition of regulatory T cells. Thus, redirected homing of T cells to the BM confers increased memory differentiation and antitumor immunity, suggesting an innovative solution to increase the persistence and functions of therapeutic T cells

    Automated identification and localization of hematopoietic stem cells in 3D intravital microscopy data

    Get PDF
    SummaryMeasuring three-dimensional (3D) localization of hematopoietic stem cells (HSCs) within the bone marrow microenvironment using intravital microscopy is a rapidly expanding research theme. This approach holds the key to understanding the detail of HSC-niche interactions, which are critical for appropriate stem cell function. Due to the complex tissue architecture of the bone marrow and to the progressive introduction of scattering and signal loss at increasing imaging depths, there is no ready-made software to handle efficient segmentation and unbiased analysis of the data. To address this, we developed an automated image analysis tool that simplifies and standardizes the biological interpretation of 3D HSC microenvironment images. The algorithm identifies HSCs and measures their localization relative to surrounding osteoblast cells and bone collagen. We demonstrate here the effectiveness, consistency, and accuracy of the proposed approach compared to current manual analysis and its wider applicability to analyze other 3D bone marrow components

    Machine learning classification of complex vasculature structures from in-vivo bone marrow 3D data

    No full text
    Blood vessels inside the bone marrow (BM) play a vital role in the maintenance of hematopoietic stem cell (HSCs). Investigating the interaction of HSCs relative to vasculature has become the main headline for many recent studies. Advances in microscopy and image analysis using mouse models have allowed detection, identification and automated quantification of HSCs alongside their vascular niche. This resulted in new hypotheses concerning the activation state of HSCs adjacent to different blood vessel types (for example sinusoids vs. arterioles). Identifying the different types of BM vasculature has become critically important, however it still requires the use of complex immunostainings ex vivo or transgenic reporter mouse lines in vivo. To eliminate these requirements and increase the throughput of studies focusing on the HSC niche, we present a machine learning classification approach based on the Decision Tree Classifier to classify different regions of bone marrow vasculature into four distinct classes based on their discriminative features
    corecore